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Adult subventricular zone neurogen-
esis is an important process in

most mammals. However, whether it
persists in humans is highly debated.
Recent work by Sanai and colleagues
provides a major step in settling this
debate. Using histological approaches,
they demonstrated an active subventricu-
lar zone with limited neurogenesis in
humans as well as discovered a new
migratory route.

Introduction

Neurogenesis, the process by which new
neurons are generated, continues after birth
and into adulthood in the brains of many
mammals. Increasing evidence supports its
crucial role in brain functions including
learning and memory.1 Altman’s pioneering
work2,3 provided the first evidence of adult
mammalian neurogenesis restricted to two
neurogenic brain areas: the hippocampus2

and the subventricular zone (SVZ)3 of the
lateral ventricles. Although adult neurogen-
esis was also found in humans in the dentate
gyrus,4 until recently its putative extension
to the human SVZ remained in question.
Newly produced immature nerve cells
(neuroblasts) in the SVZ reach the olfactory
bulb (OB) by undergoing tangential chain
migration along the rostral migratory stream
(RMS) to the OB, where they eventually
differentiate to become new OB neurons.1

While Bédard and Parent5 reported a
comparable process in adult human SVZ
to that of rodents, Sanai and colleagues6 did
not find such evidence. Instead, they
reported a markedly different organization.
Though they found a specific ribbon of
astrocytes that behave as multipotent

neuroblasts in vitro, they observed only a
few proliferating and migrating neuroblasts
in vivo with no evidence of chains of
migration, neither in the SVZ nor in the
RMS to the OB.6 In contrast, in 2007,
Curtis et al.7 reported a massive prolifera-
tion in adult human SVZ and intense
migration via a RMS along a putative lateral
ventricular extension found to connect the
human SVZ to the OB. Such possible RMS
existence in humans was immediately
contested by Sanai et al.,8 who raised
concerns about technical demonstration
insufficiency. More recently, an immuno-
histochemical study on the precise cytoarch-
itecture of human migratory stream
supported original findings from Curtis
and collaborators.9

The recent work of Sanai et al.10

provides the first developmental study of
the human SVZ. The authors aimed at
highlighting the organization, cytoarchi-
tecture and ultrastructure of the SVZ of
the anterior horn of the lateral ventricle,
using serial sections prepared from a
remarkable collection of human brain
tissue gathered at different ages. Simul-
taneously, they intended to evaluate the
extent and target(s) of migration from
neonatal to adult stages.

Key Results and Related Methods

In the recent article published in Nature in
2011, Sanai et al.10 performed fluorescent
immunohistochemistry using a wide range
of specific markers (for cell proliferation,
migration and cell lineages) and in situ
hybridization using postmortem brain
tissue from humans aged from birth to
84 years. Using indirect immunoenzyme
detection for the most specific markers of
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cell proliferation, migration and cell types
(Fig. 1), they characterized SVZ organiza-
tion across the human lifespan and
revealed a dynamic RMS from the SVZ
to the OB in neonates. Importantly,
quantification analyses showed a drastic
decrease in proliferating and migrating
neuroblasts from birth to 18 mo leaving
only very few in adults. Ultrastructural
observations on section and whole mount
preparations revealed the organization of
RMS as uninterrupted chains of migrating
neuroblasts surrounded by glia in neo-
nates. In older children, migrating cells
appear individually or in pairs without
forming chains. Unexpectedly, serial coronal

reconstructions of the frontal lobe revealed a
medial migration stream (MMS) of neuro-
blasts branching off the RMS toward a
particular cortical area: the ventromedial
prefrontal cortex (VMPFC) (Fig. 1). This
MMS was observed only in humans aged
4–6 mo.

Discussion

Together the results indicate that the
neonate human SVZ and RMS contain
an extensive corridor of migrating neuro-
blasts before 18 mo of age, which is
drastically reduced in older children and
adults. Unexpectedly, during this window

of neurogenesis, a novel migratory stream,
the MMS, was found to deliver SVZ
neuroblasts to the prefrontal cortex
(Fig. 1). Interestingly, this MMS is not
observed in mice, suggesting that it might
be a trait acquired during evolution.
However, similar chains of neuroblasts
reaching the frontal cortex from the RMS
were found in postpuberal rabbits.11 The
presented findings settle conflicting
reports6,7 by providing compelling evid-
ence of a re-organization of the SVZ
neurogenic site in early childhood. This is
consistent with recent data, which showed
an active RMS in the human SVZ at fetal
stages while only a few neuroblasts in the

Figure 1. Postnatal neurogenesis in the human SVZ. From birth through neonatal stages, the human SVZ is densely populated by neuroblasts
(expressing doublecortin and b-III tubulin immature neuronal markers); some of them are proliferative (expressing Ki67 marker). Neuroblasts derived
from the SVZ have a migratory phenotype (unipolar and bipolar elongated cells expressing polysialylated neural cell adhesion molecule) and move
rostrally to the OB in tangential oriented cellular chains via the RMS. From 4 to 6 mo old, some migrating neuroblasts (expressing interneuron markers
calretinin and tyrosine hydroxylase) take a second route through the MMS targeting the VMPFC. In adult stages, the SVZ is depleted of most of its
neuroblasts, leaving behind only a few. The remaining migrating neuroblasts appear alone or in pairs along the expected route of the RMS, without
forming chains. An astrocyte “ribbon” (expressing glial fibrillary acidic protein) which forms a matrix around the chains of migrating neuroblasts is also
represented here in a simplified diagram. Those astrocytes might act as a physical guide thereby influencing neuronal migration. The presence of
astrocytes along the MMS is not documented and requires further studies.
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adult.12 This leads to the immediate
questions of why and how this restruc-
turing occurs. While the issue of its
adaptive significance remains to be
explained, one hypothesis for this discov-
ery is that neurogenesis in the adult
human SVZ may exist at a low rate as
the requirement for new neurons may be
relatively low, but remains active in order
to be quickly induced following CNS
insults for self-repair. Further understand-
ing the guidance cues that regulate
neuroblasts migration1,13 are of excep-

tional importance to develop new cell
therapy strategies, all the more that RMS
has recently been characterized in large
animals to that purpose.14 Finally, the
interesting discovery of the time-limited
period of MMS specifically targeting the
VMPFC suggests that newly arriving
neurons may play a role in cognitive tasks
and emotional processes, especially con-
sidering that these neurons were found to
be dopaminergic.15 It may be time to re-
explore the role and interactions of the
VMPFC during this developmental time

window. Future studies of MMS are likely
to shed more light on the understanding
of some of the neurodevelopmental brain
disorders affecting cognition such as
schizophrenia and attention deficit
disorder.
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